

 Automation Manual

 Manual Version 1.0.2

• 1. Functional

– Symphony Automation

– What is Symphony Automation?

• Advantages.

• High Level Challenges:

– Objective.

– Entities

– Variables

– Automation Blocks

– Use Cases

• 2. Architecture

– Architecture First view

– Local Environment

– Production Environment

– Deployment

• 3. Development

– User Guide

• Pre requisite:

• Locate Automation:

• Into Automation flows:

– Create New Flow:

– BLOCKS:

• Start:

• End:

• Timer:

• Choice:

• Go to:

• Wait for Signal:

• Invoke Rest API:

file:///C:/Users/corozcoc/Downloads/1_functional/intro.md
file:///C:/Users/corozcoc/Downloads/2_architecture/intro.md
file:///C:/Users/corozcoc/Downloads/3_development/intro.md

• Publish to Kafka:

• For each loop:

• Expression language for transformation

• Examples

– Example (A):

• Configuration

– Example (B)

Automation Manual

Functional

What is Symphony Automation?

Automation was built to orchestrate and automate internal an external task, with the
simplicity and facility to create flows, the quick use provide the user the quickness and ease
to create robust orchestration and automation processes.

Advantages:

• It allows a person to define a flow with almost no knowledge of code.

• Therefore, the definition times of the automatisms are reduced.

• Help on issues of testing the flows.

High Level Challenges:

• Import and export flow templates.

• Consume kafka topics.

Objective:

Symphony’s Automation Module, which is in process of definition and design to be included
in the platform, will allow the network operator to automate and orchestrate internal and
external tasks, interacting with the rest of the platform. This is a key need of the operators,
so building a capable, flexible and complete automation tool will bring a great value for the
platform.

Entities:

• Flow :

 A published flow that can be triggered by its trigger blocks or start by human
interaction or API. It contains a list of blocks. It can also contain a draft flow that is
newer version of the flow

• Flow Draft:

 Similar to flow but used when flow is still during work and inactive. Another key
difference is that many validations that apply on flow graph in Flow don’t apply on
Flow Draft

• Flow Template:

 Copy of the the Flow that is attached to the running flow instance and used for the
instance. This makes sure that new versions of Flow don’t interrupt running instances

• Flow Instance:

 Running execution of the flow, holds a a list of block instance (currently running and
already completed) and can be used to check the status of the running flow

• Block:

 Block is the execution unit in the flow. It can be inside Flow, Flow Draft or Flow
Template. Blocks can be of 3 main categories: Administrative blocks (Start, End,
GoTo, Decision, Fork), action blocks and trigger blocks. action blocks and trigger
blocks types are set by enum values that corresponds to their implementation in
code

Automation Blocks:

Start Block

Initialize the flows, this block marks the starting point of the flow.

End Block

Marks the end of the execution of an automation.

Timer Block

This block allows you to set a waiting time in the execution of the flow.

Choice Block

The choice block receives an input and depending on that determines a path of execution
of the flow.

Go To Block

This block allow the user to direct the step to the respective step

Wait for signal Block

This block receives an input that will be a signal that at the moment will be tied to some
behavior of Symphony, where upon receiving said signal it proceeds or executes some
change according to the configuration.

Invoke Rest Api Block

This block receives URL to perform some request GET, POST, DELETE or PATCH, with its
result it would work in some order of the flow.

Publish to kafka Block

This block Based on the kafka url/uri, we can post messages.

For each loop

This block allows the option to create loops.

Use Cases:

• Docomo

– In Docomo the Automation Engine allows the creation of workflow templates
through the GUI simplifying the definition of workflows that can be instantiated
to perform different functions over the Docomo network. Several flows can be
defined in the automation engine to enable the interaction between the
different systems of the SMO (e.g. NFMF, Non-RT RIC, NSSMF, EM) to
accomplish functionalities related to the NF management.

• Catalyst 2022

– We use Symphony automation in the Catalyst 2022 to execute multi-domain
orchestration flows, from the feasibility analysis, where the Automation
interacts with the infrastructure and inventory APIs. It then executes the
activation flows of the IoT domain where it generates work orders, then
networks where it uses TMF640 and 3GPP APIs, and finally the infrastructure
and application domain where it deploys using GitOps.

Automation Manual

Architecture

Production Environment

Automation Manual

Development

User Guide
==

Pre requisite:

First validate that the Feature Execute automation flows are enabled like that:

Locate Automation:

In Symphony select the respective option of AUTOMATION MANAGEMENT

When you select the respective option, you enter to Automation Dashboard. In this, are
two options

Automation flows and operation:

1. Into Automation flows:

When you select the automation flow option:

• It will turn blue for the selection option

• In the top you will see the respective name

• In the right top, there is a button for create new flow

• The selected rectangle you will see all the available flows that previously the
user/s created.

1.1. Create New Flow:

When you are into the create new flow, the first step is to insert the name and description
for the new flow, after that, you will now interact with dashboard flows.

1. You can select the respective blocks to work.
2. Save: option to keep the actual draft.
3. Publish: when the flows are ready, with the publish you make it available for a
respective launch.

4. Options Panel: show information about the draft or blocks.
5. Provide 4 options:

* Edit flow drafts: Name or description about the flow.
* Duplicate flow: make a duplicate to the current flow.
* Archive flow: Make the flow in archive status.
* Delete flow: Erase the current block.

1.2. BLOCKS:

Is important to all flows understand the interact always are Start block next blocks and
finally End block.

A description of the function of each block and the items that can be set in the Options
window are as follows.

Block Name Function Configuration Input Output Error Handling Remarks

Start The starting point of the
automation workflow

- Name Only one can be
placed on the
canvas

End End of the Automated
workflow

- Name

Timer -Set time elapses
-Wait for automation
workflow until a specified
date and time

Name
Behavior
Expression Language

 - Retry Policy Set the value in a
language: unix
epoch or ISO8601 If
the value is set in a
language, it must
be in unix epoch or
ISO8601 format.

Choice Branching automation
workflow according to
defined rules

- Name
- Name rule
- Add rule

 - Retry Policy Multiple rules can
be set

Go to Move automation workflow
that has reached Go to
(Origin) to Go to
(Destination)

Name
Type

 - Retry Policy Origin and
Destination can be
changed in Type

Wait for signal Wait for automated
workflow until a signal
matching the definition
arrives

Name
Signal Module
Signal Type
Custom Filter
Block flow until
reception

 - Transform
Output
- Transform
State
- Add original
input to output

- Retry Policy

Invoke REST API Invoke REST API endpoint Name
URL Method
URL
Connection Timeout
Headers
Body Content
Auth Type

- Transform
Input
- Transform
State

- Transform
Output
- Transform
State
- Add original
input to output

- Retry Policy

Publish To Kafka Publish a message to Kafka Name
Brokers
Topic
Message Type

- Transform
Input
- Transform
State

- Transform
Output
- Transform
State
- Add original
input to output

1. Start:

Is mandatory to Start all flows with this block.
Only the Configuration tab exists in the Start block.
The items that can be set on the Configuration tab of the Start block are as follows.

Item Name Input Method Input/Select Format Description

Name Text input No restrictions Set the name of the block

2. End:

Is mandatory to close the flow.
Only the Configuration tab exists in the Start block.
The items that can be set on the Configuration tab of the End block are as follows.

Item Name Input Method Input/Select Format Description

Name Text input No restrictions Set the name of the block

3. Timer:

This block provides the option to establish an interval for a concrete interaction Into the
modify options. The Timer block has a Configuration tab and an Error Handling tab.

The items that can be set on the Configuration tab of the Timer block are as follows.

Configuration:

Item Name Input Method Input/Select
Format

Description

Name Text input No restrictions Set the name of the block

Behavior Pull-down Choose from the
following
Fixed Interval
Specific date
time

Select the conditions under which the automation
workflow will resume
Specified time elapsed
Specific date and time
Both fixed interval and specific date and time allow to use
literal values, or to use variables/expression language ad
defined in section 1.3.

Expression
Language

ON/OFF
Button

Toggle ON/OFF When ON, a description field appears

Expression
Language

Text input Unlimited Input only if Expression Language button is ON
Enter time/day in Expression Language expression language
and unix epoch or ISO8601 format

Seconds Either of the
following
Enter a number
Spin button

Half-width
number

Set the number of seconds to wait in the Input Timer
block if Behavior is Fixed Interval and Expression Language is
OFF
Set the number of seconds to wait in the Input Timer block
if Behavior is Fixed Interval and Expression Language is OFF

Time slot
start

Calendar/Clock
dialog

No input
allowed

Set the date and time to restart the automation workflow
with the input calendar and clock if Behavior is Specific date
and time and Expression Language is OFF

Error Handling: Its function is to have retry policies when the logic of the block fails or
does not complete.

Item
Name

Input Method Input/Select
Format

Description

Retry Policy ON/OFF
button

No input allowed Set retry policy ON/OFF

Retry
Interval

One of the
following
Enter a number
Spin button

Half-width
number

Set the interval for retry processing

Units Pull-down Select from the
following
Seconds
Minutes
Hours

Set Retry Interval Units

Max
Attemps

One of the
following
numeric input
spin button

single-byte
numbers

Set the maximum number of retry processing attempts

Backoff
rate

One of the
following
Enter a number
Spin button

single-byte
number

Set the backoff rate (the rate at which the retry processing
interval increases with each attempt)

• If Expression Language is ON, the Expression Language field is displayed instead of the
Seconds and Time slot start fields.

• If Behavior is Specific date and time and Expression Language is OFF, the Time slot
start field is displayed instead of the Seconds field.

Clicking on the entry field will bring up a calendar/clock dialog that allows you to set the
date and time. In the dialog, you can switch between the calendar and clock tabs to set
the date and time.

You can also switch between each item and AM/PM by clicking on each item in the
date/time display at the top of the dialog.

4. Choice:

The Choice block branches the automation workflow according to the rules you define.
The Choice block has a Configurations tab and an Error Handling tab. The following items
can be set on the Configurations tab of the Choice block.

This block stablishes and logical way into the flow with a respective define rule, in the
options of this block we found:

Configuration:

Item
Name

Input Method Input/Select
Format

Description

Name Text input No restrictions Set the name of the block

Name rule Enter text No restrictions Set the name of the rule Click the trash button to delete the
rule Click the pencil button to make the Rule field appear

Rule Text input No restrictions Fill in the conditions for branching in Expression Language
expression language The order of rules is switched by
dragging the button with six dots, where the branching
decision is made preferentially from the rule located at the
top of the window

Add Rule No value No input allowed Click to open a new Name rule field

Error Handling: Its function is to have retry policies when the logic of the block fails or
does not complete.

Item
Name

Input Method Input/Select
Format

Description

Retry Policy ON/OFF
button

No input allowed Set retry policy ON/OFF

Retry
Interval

One of the
following
Enter a number
Spin button

Half-width
number

Set the interval for retry processing

Units Pull-down Select from the
following
Seconds

Set Retry Interval Units

Minutes
Hours

Max
Attemps

one of the
following
numeric input
spin button

single-byte
numbers

set the maximum number of retry processing attempts

Backoff
rate

one of the
following
Enter a number
Spin button

single-byte
number

set the backoff rate (the rate at which the retry processing
interval increases with each attempt)

• Click Add rule to display the Name rule field. On the right side of the Name rule
column, a trash button and a pencil button are displayed. Clicking the trash button
deletes the Name rule column.

• Click the pencil button to display the Rule field and enter a rule.

5. Go to:

This block a communication to move into the flow. There are two types of go to blocks:
Go to (Origin) and Go to (Destination).

Configuration:

Item Name Input Method Input/Select Format Description

Name Text input No restrictions Set the name of the block

Type Pull-down Choose from the
following
Origin
Destination

Select Origin to change the block to Go to(Origin)
Select Destination to change the block to Go
to(Destination)

• Automation workflows that reach the Go to (Origin) block are moved to a Go to
(Destination) block that exists elsewhere on the canvas. It is used when the
automation workflow is long, for example, and can improve overall visibility by
separating the automation workflow.

• If there are multiple combinations of Go to blocks, the automated workflow that
reaches the Go to (Origin) block will be moved to the Go to (Destination) block with
the same Name column.

Error Handling: Its function is to have retry policies when the logic of the block fails or
does not complete.

Item
Name

Input Method Input/Select
Format

Description

Retry Policy ON/OFF
button

No input allowed Set retry policy ON/OFF

Retry
Interval

One of the
following
Enter a number
Spin button

Half-width
number

Set the interval for retry processing

Units Pull-down Select from the
following
Seconds
Minutes
Hours

Set Retry Interval Units

Max
Attemps

one of the
following
numeric input
spin button

single-byte
numbers

Set the maximum number of retry processing attempts

Backoff
rate

one of the
following
Enter a number
Spin button

single-byte
number

Set the backoff rate (the rate at which the retry processing
interval increases with each attempt)

Example

6. Wait for Signal:

This block brings the option to wait the respective signal from Symphony. The Wait for
signal block contains the Configurations tab, the Output tab, and the Error Handling tab.
The following items can be set on the Configurations tab of the Wait for signal block.

Configuration:

• Name

• Signal Module

• Signal Type

Item Name Input
Method

Input/Select
Format

Description

Name Text input No restrictions Set the name of the block

Signal Module Pull-down Choose from the
following
Inventory

Select the module for the specified signal

Configuration
Management
Workforce
Management
Assurance

Signal Type Pull-down Select from the
following
WO Created
CR Created
PR Created
MOI Created
WO Updated
CR Updated
PR Updated
MOI Updated

Select the format of the signal to be specified
WO stands for Work Order CR stands for Change
Request PR stands for Project Request

Custom Filter

Character
Input

Unrestricted

Additional conditions for signal in Expression Language
expression language

Block flow until
reception

ON/OFF
button

Toggle ON/OFF

Select whether to block automation workflow until
the specified signal is received

Output: This option provides 3 configurations:

• Transform Output

• Transform State

• Add original input to output

Item Name Input
Method

Input/Select
Format

Description

Transform Output ON/OFF
button

Toggle ON/OFF Set output transform rule ON/OFF

Transform State ON/OFF
Button

Toggle ON/OFF Set ON/OFF for state transformation rules

Add original Input
to output

ON/OFF
button

Toggle ON/OFF Set option ON/OFF to add

JSON Object Character
input

Unrestricted Transform Output, Transform State is ON only,
input occurrence transformation rules in JSON format

Strategy pull-down select from the
following
Replace
Merge

only appears if Transform Output, Transform State is ON
If Replace, discard the output /state
before transformation If Merge, append the
output/state before transformation to the result

Addition Method Pull-down Select from the
following
Combine
Discard result

Appears only if Add original Input to output is ON.
If Discard result is ON, the input before conversion is
discarded.

Error Handling: Its function is to have retry policies when the logic of the block fails or
does not complete.

Item
Name

Input Method Input/Select
Format

Description

Retry Policy ON/OFF
button

No input allowed Set retry policy ON/OFF

Retry
Interval

One of the
following
Enter a number
Spin button

Half-width
number

Set the interval for retry processing

Units Pull-down Select from the
following
Seconds
Minutes
Hours

Set Retry Interval Units

Max
Attemps

one of the
following
numeric input
spin button

single-byte
numbers

Set the maximum number of retry processing attempts

Backoff
rate

one of the
following
Enter a number
Spin button

single-byte
number

set the backoff rate (the rate at which the retry processing
interval increases with each attempt)

7. Invoke Rest API:

This block brings the option to establish communication via Rest API, in this block. The
Invoke REST API block has a Configurations tab, an Input tab, an Output tab, and an
Error Handling tab. The following items can be configured on the Configurations tab
of the Invoke REST API block.

Configuration:

• If Auth Type is None

• If Auth Type is Basic

• If Auth Type is Oidc

Item Name Input Method Input/Select Format Description

Name Text input No restrictions Set the name of the block

URL Method pull-down choose from the
following
GET
POST
PUT
DELETE
PATCH

select the URL method to call

URL text input no restrictions set URL to call

Connection
Timeout

Either of the following
Enter a number
Spin button

Half-width number Set the number of seconds an API
call will time out

Headers Character input Unrestricted Set API headers to call

Body Content Character Input Unrestricted Set the body of the API to call

Auth Type pull-down select from the following
None
Basic
Oidc

set the authentication method for
the API to call

User Character input Unlimited Appearance only if Auth Type is Basic
Enter a valid user name for Basic
authentication

Password Character input Unlimited Appearance only if Auth Type is Basic
Enter a valid password for Basic
Authentication

Client ID Character input Unrestricted Appears only if Auth Type is Oidc
Enter a valid client ID for OpenID
Connect authentication

Client Secret Character Entry Unrestricted Appears only if Auth Type is Oidc
Enter a valid client secret for OpenID
Connect authentication

URL Character input Unlimited Appears only if Auth Type is Oidc
Enter a valid URL for OpenID Connect
authentication

Input: This option provides 2 configurations:

• Transform Input

• Transform State

Item Name Input
Method

Input/Select
Format

Description

Transform Input ON/OFF
Button

Toggle ON/OFF Set ON/OFF for input transformation rules

Transform State ON/OFF
Button

Toggle ON/OFF Set ON/OFF for state transformation rules

JSON
Object

Character
Input

Unrestricted Transform Input, Transform State must be ON to input
occurrence, transformation rules in JSON format

Strategy pull- down select from the
following
Replace
Merge

appears only if Transform Input, Transform State is ON If
Replace, discard the original input /state If Merge,
append the original input/state to the result

Output: This option provides 3 configurations:

• Transform Output

• Transform State

• Add original input to output

Item Name Input
Method

Input/Select
Format

Description

Transform Output ON/OFF
button

Toggle ON/OFF Set output transform rule ON/OFF

Transform State ON/OFF
Button

Toggle ON/OFF Set ON/OFF for state transformation rules

Add original Input
to output

ON/OFF
button

Toggle ON/OFF Set option ON/OFF to add

JSON Object Character
input

Unrestricted Transform Output, Transform State is ON only,
input occurrence transformation rules in JSON format

Strategy pull-down select from the
following
Replace
Merge

only appears if Transform Output, Transform State is ON
If Replace, discard the output /state
before transformation If Merge, append the
output/state before transformation to the result

Addition Method Pull-down Select from the
following
Combine
Discard result

Appears only if Add original Input to output is ON.
If Discard result is ON, the input before conversion is
discarded.

Error Handling: Its function is to have retry policies when the logic of the block fails or
does not complete.

Item
Name

Input Method Input/Select
Format

Description

Retry Policy ON/OFF
button

No input allowed Set retry policy ON/OFF

Retry
Interval

One of the
following
Enter a number
Spin button

Half-width
number

Set the interval for retry processing

Units Pull-down Select from the
following

Set Retry Interval Units

Seconds
Minutes
Hours

Max
Attemps

one of the
following
numeric input
spin button

single-byte
numbers

set the maximum number of retry processing attempts

Backoff
rate

one of the
following
Enter a number
Spin button

single-byte
number

set the backoff rate (the rate at which the retry processing
interval increases with each attempt)

8. Publish to Kafka:

This block establishes a connection with a kafka to publish messages to a given queue.
The Publish To Kafka block has a Configuration tab, an Input tab, and an Output tab. The
following items can be configured on the Configurations tab of the Publish To Kafka
block.

Configuration:

Item Name Input Method Input/Select
Format

Description

Name Text input No restrictions Set the name of the block

Brokers Character input Unlimited Set Broker for target Kafka

Topic Text input Unlimited Set the target Kafka Topic

Message Type Pull-down Select from the
following
Input
State
Expression

Select the type of data to publish

Message Text input Unrestricted Occurs only when Message Type is
Expression

Enter a message to be
published to Kafka

Input: This option provides 2 configurations:

• Transform Input

• Transform State

Item Name Input Method Input/Select
Format

Description

Transform Input ON/OFF
Button

Toggle ON/OFF Set ON/OFF for input transformation rules

Transform State ON/OFF
Button

Toggle ON/OFF Set ON/OFF for state transformation rules

JSON
Object

Character Input Unrestricted Transform Input, Transform State must be ON to
input occurrence, transformation rules in JSON
format

Strategy pull- down select from the
following
Replace
Merge

appears only if Transform Input, Transform State is ON
If Replace, discard the original input /state If Merge,
append the original input/state to the result

Output: This option provides 3 configurations:

• Transform Output

• Transform State

• Add original input to output

Item Name Input
Method

Input/Select
Format

Description

Transform Output ON/OFF
button

Toggle ON/OFF Set output transform rule ON/OFF

Transform State ON/OFF
Button

Toggle ON/OFF Set ON/OFF for state transformation rules

Add original Input
to output

ON/OFF
button

Toggle ON/OFF Set option ON/OFF to add

JSON Object Character
input

Unrestricted Transform Output, Transform State is ON only,
input occurrence transformation rules in JSON format

Strategy pull-down select from the
following
Replace
Merge

only appears if Transform Output, Transform State is ON
If Replace, discard the output /state
before transformation If Merge, append the
output/state before transformation to the result

Addition Method Pull-down Select from the
following
Combine
Discard result

Appears only if Add original Input to output is ON.
If Discard result is ON, the input before conversion is
discarded.

Error Handling: Its function is to have retry policies when the logic of the block fails or
does not complete.

Item Name Input Method Input/Select Format Description

Retry Policy ON/OFF button No input allowed Set retry policy ON/OFF

Retry Interval One of the following
Enter a number
Spin button

Half-width number Set the interval for retry processing

Units Pull-down Select from the
following
Seconds
Minutes
Hours

Set Retry Interval Units

Max Attemps one of the following
numeric input

single-byte numbers

spin button set the maximum number of retry
processing attempts

Backoff rate following
- Enter a number

single-byte number set the backoff rate (the rate at which
the retry processing interval increases
with each attempt)

9. For each loop:

This block establishes a flow loop. The number of executions can be set by entering it in
the Items Array field. The For each loop block has a Configurations tab, an Input tab, an
Output tab, and an Error Handling tab. The following items can be set in the
Configurations tab of the For each loop block.

Configuration:

Item Name Input Method Input/Select Format Description

Name Text input No restrictions Set the name of the block

Items Array Text input Unlimited Set number of times to run

It will iterate twice, since the list have two objects, and in the first iteration the
following input will be forwarded: {"key1": "value1", "key2": "value2"}, and in the
second iteration the input sent to the first internal block in the for each will be {"key1":
"value3", "key2": "value4"}.

The other way this Items Array field can be configured, is by receiving a JSON containing
different keys and object values. In this case the block internal and automatically
transforms the input sending in each iteration a structure containing the key name on a
field the object value in a different field. For example, if the input is: {"CU-02": {"key1":

"value1"}, "DU-01": {"key2": "value2}}, the block will iterate twice, and in the first
iteration it will send as input {"key": "CU-02", "value": {"key1":"value1"}}. In the second
iteration, it will send as input {"key": "DU-01", "value":

{"key2": "value2}}.

Input: This option provides 2 configurations:

• Transform Input

• Transform State

Item Name Input Method Input/Select
Format

Description

Transform Input ON/OFF

Button

Toggle ON/OFF Set ON/OFF for input transformation rules

Transform State ON/OFF

Button

Toggle ON/OFF Set ON/OFF for state transformation rules

JSON

Object

Character Input Unrestricted Transform Input, Transform State must be ON to
input occurrence, transformation rules in JSON
format

Strategy pull- down select from the
following

Replace

Merge

appears only if Transform Input, Transform State is ON
If Replace, discard the original input /state If Merge,
append the original input/state to the result

Output: This option provides 3 configurations:

• Transform Output

• Transform State

• Add original input to output

Item Name Input
Method

Input/Select
Format

Description

Transform Output ON/OFF

button

Toggle ON/OFF Set output transform rule ON/OFF

Transform State ON/OFF

Button

Toggle ON/OFF Set ON/OFF for state transformation rules

Add original Input
to output

ON/OFF

button

Toggle ON/OFF Set option ON/OFF to add

JSON Object Character
input

Unrestricted Transform Output, Transform State is ON only,

input occurrence transformation rules in JSON format

Strategy pull-down select from the
following

Replace

Merge

only appears if Transform Output, Transform State is ON
If Replace, discard the output /state

before transformation If Merge, append the
output/state before transformation to the result

Addition Method Pull-down Select from the
following

Combine

Discard result

Appears only if Add original Input to output is ON.

If Discard result is ON, the input before conversion is
discarded.

Error Handling: Its function is to have retry policies when the logic of the block fails or
does not complete.

Item
Name

Input Method Input/Select
Format

Description

Retry Policy ON/OFF
button

No input allowed Set retry policy ON/OFF

Retry
Interval

One of the
following
Enter a number
Spin button

Half-width
number

Set the interval for retry processing

Units Pull-down Select from the
following
Seconds
Minutes
Hours

Set Retry Interval Units

Max
Attemps

one of the
following
numeric input
spin button

single-byte
numbers

set the maximum number of retry processing attempts

Backoff rat One of the
following:
- Enter a
number
Spin button

single-byte
number

set the backoff rate (the rate at which the retry processing
interval increases with each attempt)

1.3. Expression language for transformation:

Expression language can be used to transform input, output, input state, output state or
even to use in block logic fields. The next table summarizes the functions available for data
transformation.

input-state function syntax output

{"negative_value": -35.7}
{"abs1":
math.abs(input.negative_value)} {"abs1": 35.7}

literal input {"abs2": math.abs(-15)} {"abs2": 15}

{"value2": 0.4} {"acos": math.acos(input.value2} {"acos": 1.1592794807274085}

{"value2": 0.4} {"acosh": math.acosh(state.value2 } {"acosh":3.3092083606287246}

{"value2": 0.4} {"asin": math.asin(input.value2)} {"asin":0.41151684606748806}

{"value2": 0.4} {"asinh": math.asinh(state.value2)} {"asinh":3.311872343563387}

{"value2": 0.4} {"atan": math.atan(input.value2)} {"atan":0.3805063771123649}

{"value2": 0.4} {"atanh": math.atanh(input.value2)} {"atanh":0.423648930193602}

{"value2": 0.4} {"cbrt": math.cbrt(state.value2)} {"cbrt":2.3928025107131377 }

{"value2": 0.4} {"ceil": math.ceil(state.value2)} {"ceil":14}

{"value2": 0.4} {"cos": math.cos(input.value2)} {"cos":0.921060994002885}

{"value2": 0.4} {"cosh": math.cosh(state.value2)} {"cosh":445455.5829901414}

{"code": "Input code"}
{"ends_with1":
input.code.endsWith('In')} {"ends_with1": false}

{"code": "Input code"}
{"ends_with2":
input.code.endsWith('de')} {"ends_with2": true}

{"value2": 0.4} {"exp": math.exp(state.value2)} {"exp":890911.1659791603}

{"value2": 0.4} {"exp2": math.exp2(state.value2)} {"exp2":13307.943261900557}

{"value2": 0.4} {"expm1": math.expm1(state.value2)} {"expm1":890910.1659791603}

{"value2": 0.4} {"floor": math.floor(state.value2)} {"floor":13}

{"value2": 0.4}

{"hypot":
math.hypot(input.value2,state.value2
)}

{"hypot": 13.705838172107534}

{"code": "Input code"}
{"index_of1":
input.code.indexOf('de')} {"index_of1":8}

{"code": "Input code"}
{"index_of2":
input.code.indexOf('xe')} {"index_of2":-1}

{"value": 90.0} {"input_value": input.value + 10.0} {"input_value":100}

{"code": "Input code"}

{"join1":
strings.join([input.code.trim(),
state.code.trim()], ' - ')} {"join1":"Input code - Inpute code"}

literal input
{"join2": strings.join(['a', 'b', 'c', 'd',
'e'], ', ')} {"join2":"a, b, c, d, e"}

{"value2": 0.4} {"log": math.log(state.value2)} {"log":2.617395832834079}

{"value2": 0.4} {"log10": math.log10(state.value2)} {"log10":1.1367205671564067}

{"value2": 0.4} {"log1p": math.log1p(state.value2)} {"log1p":2.6878474937846906}

{"value2": 0.4} {"log2": math.log2(state.value2)} {"log2":3.776103988073164}

{"code": "Input code"} {"lower": input.code.toLower()} {"lower":"input code"}

{"value2": 0.4}
{"max": math.max(input.value2,
state.value2)} {"max": 0.4}

{"value2": 0.4}
{"min": math.min(input.value2,
state.value2)} {"min":0.4}

{"value2": 0.4}
{"mod": math.mod(input.value2,
state.value2)} {"mod":0.4}

{"value2": 0.4} {"pow": math.pow(state.value2, 5)} {"pow":482617.24456999986}

literal input {"pow10": math.pow10(5)} {"pow10":100000}

{"value2": 0.4}

{"remainder":
math.remainder(input.value2,
state.value2)}

{"remainder":0.4}

{"code": "Input code"}
{"replace": input.code.replaceAll('d',
'x')} {"replace":"Input coxe"}

{"value2": 0.6} {"round": math.round(state.value2)} {"round": 1}

{"value2": 0.4} {"sin": math.sin(input.value2)} {"sin":0.3894183423086505}

{"value2": 0.4} {"sinh": math.sinh(state.value2)} {"sinh": 445455.58298901893}

{"code": "Input code"} {"size": input.code.size()} {"size":10}

{"code": "Input code"}
{"split1": input.code.split(' ')}

{"split1":[
"Input,
"code"
]}

literal input

{"split2": 'Transformation
test'.split('t')}

{"split2":
[
"Transforma",
"ion
",
"es",
""
]}

{"value2": 0.4} {"sqrt": math.sqrt(state.value2)} {"sqrt":3.7013511046643495 }

{"code": "Input code"}
{"starts_with1":
input.code.startsWith('In')} {"starts_with":true}

{"code": "Input code"}
{"starts_with2":
input.code.starstWith('Ok')} {"starts_with2":false}

{"code": "State code" } {"state_code": state.code} {"state_code":"State code"}

literal value {"static": "STATIC"} {"static":"STATIC"}

{"code": "State code"} {"substring1": state.code.substring(2)} {"substring1":"ate code"}

{"code": "State code"}
{"substring2":
state.code.substring(3,7)} {"substring2":"te c"}

{"value2": 0.4} {"tan": math.tan(input.value2)} {"tan":0.4227932187381618}

{"value2": 0.4} {"tanh: math.tanh(input.value2)} {"tanh:0.42364893019360184}

{"code": "Input code"} {"trim1": input.code.trim()} {"trim1":"Input code"}

literal input {"trim2": ' Trim a literal '.trim()} {"trim2":"Trim a literal"}

{"value2": 13.4} {"trunc": math.trunc(state.value2)} {"trunc":13}

{"code": "Input code"} {"upper": input.code.toUpper()} {"upper":"INPUT CODE"}

{"counters": [{"counterName": "a",
"counterValue": 1},{"counterName":
"b", "counterValue": 2}]}

{"mapCounters":
input.counters.map(i,i.counterName:
i.counterValue)}

{"mapCounters": ["a": 1, "b": 2]}

{"mapCounters": ["a": 1, "b": 2]}
{"counters":
mapagg(input.mapCounters)

{"counters": {"a": 1, "b": 2}

{"counter": ""}
{"nullCounter":
replaceEmptyByNull(input.counter)} {"nullCounter": null}

{"counters": [{"a": null, "b": 1, "c":
null},{"a": 2, "b": null, "c": null}]}

{"counterWithValue":
input.counters.getFirst(i,[a,b,c])}

{"counterWithValue": [1,2]}

{"parameters":
{"ManagedNFService[0].attributes.ad
ministrativeState": "LOCKED",
"ManagedNFService[0].id": "0"}}

{"body": unflatten(input.parameters)}

{"body": {"ManagedNFService" : [
{"attributes" : {"administrativeState" :
"LOCKED"},"id" : "0"}]}}

{"numericValue": 1}
{"stringValue":
toString(input.numericValue)} {"stringValue": "1"}

{"stringValue": "1"}
{"numericValue":
toNumber(input.stringValue)} {"numericValue": 1}

{"a": 1, "b": 2} deleteKey(input,"a") {"b": 2}

{"changeRequestParams":
{"ManagedElement[0].GNBCUUPFFun
ction[0].attributes.NetworkId":
"1","ManagedElement[0].NRCellCU[0]
.attributes.NetworkId":
"2"},"currentCMVersion":
{"ManagedElement[0].GNBCUUPFFun
ction[0].id":
"0","ManagedElement[0].GNBCUUPF
Function[0].attributes.NetworkId":
"3","ManagedElement[0].NRCellCU[0]
.id": "0",
"ManagedElement[0].NRCellCU[0].att
ributes.NetworkId":
"4","ManagedElement[0].NRCellCU[1]
.id": "1",
"ManagedElement[0].NRCellCU[1].att
ributes.NetworkId": "3"}}

{"data": nested_modify_3gpp(input)}

{"data": {"/ManagedElement=DU-
01/GNBCUUPFFunction=0":
[{"urlSuffix": "/ManagedElement=DU-
01/GNBCUUPFFunction=0","body":
{"GNBCUUPFFunction": [{"attributes":
{"NetworkId": "1"},"id":
"0"}]}}],"/ManagedElement=DU-
01/NRCellCU=0": [{"urlSuffix":
"/ManagedElement=DU-
01/NRCellCU=0","body": {"NRCellCU":
[{"attributes": {"NetworkId": "2"},"id":
"0"}]}}]}}

Additionally, operators can be used to build expressions. Operators are summarized in the
next table:

Operator Category Operator symbol

multiplicative * / %

additive + -

comparison < > <= >=

equality == !=

logical AND &&

logical OR \|\|

logical NOT !

1.4. Examples:

Example (A):

This example shows a creation of a Work order in Symphony, when the process is
completed, a Signal arrive to the block “Wait fort Signal”, when the signal is okay, the flow
continue to a “Choice” block, where it validates the work order creation, with two scenarios
True or False, if true, the sequence go to eh “Go To” Block, and it continue to a finel “Invoke
Rest API” block, it apply a patch and finally go to the End block.

Configuration:

For the block “Invoke Rest API” with the name createWO:

For the specific Body Content:

It important to know the IDs for:

• WORK_ORDER_TEMPLATE_ID

• ID_PROPERTY_TYPE_TEMPLATE_ID

{
 "query": "mutation AddWorkOrder($input: AddWorkOrderInput!) {addWorkOrder(input: $input
) {name id properties {propertyType {name}propertyTypeValue {name}}}}",
 "variables": {
 "input": {
 "name": input.changeId.prepend("WO Order Test "),
 "description": "This WO is oriented to a Test.",

 "assigneeId": input.approver,
 "ownerId": input.approver,
 "workOrderTypeId": "WORK_ORDER_TEMPLATE_ID",
 "status": "PLANNED",
 "priority": "NONE",
 "flowInstanceId": input.flowID,
 "checkListCategories": [],
 "properties": [{
 "booleanValue": false,
 "stringValue": "null",
 "propertyTypeID": "ID_PROPERTY_TYPE_TEMPLATE_ID"
 }
]
 }
 }
}

For the block “Wait for signal” with the name waitApproval:

For the block “Choice” with the name validateApprove:

For the block “Go to” for the origin:

For the block “Go to” for the Destination:

For the block “Invoke Rest API” with the name Invoke REST API Test:

Example (B):

The next example shows a simple use of the For Each Block. When the flow is instantiated,
the instantiation includes an array as parameter, with values as the parameter name:[
value1, value2, value3].

The next picture shows the diagram of the flow:

The idea is that the first timer will hold de flow for 10 seconds, according with the block
configuration:

Next, the for each block has defined as its items Array : input.values, that corresponds
with the array that was sent as parameters when flow is instantiated.

With this configuration, the for each will iterate 3 times and will send each of the list
values as input parameter for the second timer, so the second timer will hold the flow for
30 seconds each round, for a total 90 seconds, according with the block config shown in
the next image:

